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The dispersion energy relation for ultra-high energy 
nuclear reactions in emulsion 

A. J. CURRAN 
Dublin Institute for Advanced Studies, School of Cosmic Physics, 
Dublin 2, Eire 
MS.  yeceived 2nd June 1971 

Abstract. When a large volume of data from cosmic ray emulsion reactions is 
analysed it is found that the variation of the mean dispersion s in the log tan 
theta plot of the charged secondaries, at each energy, follows a linear character- 
istic when plotted against the log energy of the incident particle. The slope of 
the characteristic is peculiar to the type of incident particle, and is higher for 
nucleon-nucleon collisions than for pion-nucleon events. 

1. Introduction 
One of the most fundamental parameters that can be calculated from high energy 

reaction data in the cosmic ray field is the dispersion s of the tracks in the log tan 
theta plot: 

(xi - Xm)' 
s'= 2 

i = l , n  n-1 

where x i  = lg of polar angle of track (i), x, = x,,,, of all tracks in an event and 
n = number of charged tracks in an event. 

I t  has been known for a long time that there is a tendency for the value of s to 
increase with the energy of the incident particle; the interpretation of this empirical 
fact depends on the model adopted. The  Cocconi (1958) form gets it from the greater 
Lorentz factor of the fireballs in the centre of mass system (cms) of the reaction with 
increase in available energy. As each of the fireballs is emitted with greater velocity 
with increasing energy, it is separated more widely from the centre of the distribution 
in the log tan theta plot, which is thus more spread out, leading to a higher value for 
the dispersion. 

2. The slope parameter g 
T o  investigate this phenomenon, the scatter diagrams of s against the log energy 

of the incident particle were drawn by computer methods for over five hundred 
events. The  energy of the reaction was estimated by the Castagnoli (1953) method, 
which is based on the relativistic angle transformation formula and assumes that the 
emission is reasonably symmetric, with equal numbers of particles emitted in the 
forward and backward hemispheres in the reaction cms. 

It is possible to divide these types of data for events in the range 100 to lo6 GeV 
into four main classes: primary (nucleonic) and secondary (pionic) with each of these 
selected into charge = 1 and neutral. The nature of the neutral incident particles in 
secondary reactions is an interesting question, since they cannot be neutral pions 
because of the short lifetime. Identification is not often possible by measurements at 
these energies, of course. 
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In  figure 1, the mean value of the dispersion s is shown for each log energy bin, 

Cosmic ray dispersion energy relation 

for all data taken together. The  slope g of the linear fit to the graph can be found : 

d(s)/d(lgE) = g = 0.16 for this set. 

0.2 p F . '  
Figure 1. Variation of dispersion s with lg E for all events. 
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Figure 2. Variation of dispersion s with Ig E for secondary reactions. 

Figure 2 shows the same plot for all secondary events. The  value of g is now 0.06, 
over the same range of energy, from 100 to lo4 GeV. Figure 3 shows the variation of 
s with lg E for primary events; the value of g is here 0.28 from 100 to lo4 GeV. The  
value of g for a mixture appears to be simply related to the value of g for the constit- 
uents A and B :  

(gA x number in A )  + (gB x number in B )  
number in A +number in B gmix = - 

It is interesting that the characteristic is linear for all mixtures that we are able to 
form, using the four basic sets already mentioned, and with further divisions into 
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sets from different laboratories. This appears to indicate that there is a dispersion/Iog 
energy relation that is fairly linear for all reactions in this energy range (100 to 
lo4 GeV) or that the constituents fit together in a mixture so as to allow this linearity. 

Figure 3. Variation of dispersion s with lg E for primary events. 

The latter appears unlikely. For a specific class of interactions, the g value is about 
the same using data from different sources in separate groups. I t  must be noted that 
the dispersion of any reaction can vary over a wide range; we are considering the 
mean dispersion/log energy of incident particle here. 

r 
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Figure 4. Variation of dispersion s with lg Eo,,. 

In  figure 4 we show the variation of s with the charged particle energy E,, of the 
reaction : 

Ech = 2 P, cosec Oi x 1.5 
t = l , n  
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where we take Pt to be 0.4, the measured mean transverse momentum (GeV) for 
these reactions, and B a  is the angle of emission of track i relative to the axis of the 
collision, defined by the momentum vector of the incident particle. The  number of 
charged particle tracks in an event is n, and the factor 1.5 takes into account the 50:(, 
extra neutral particles that are present on average. This energy estimate does not 
suffer from some of the disadvantages of the Castagnoli estimate E ,  used earlier. If 
E,, is on average about one third of the total energy, as has been found then the 
likely energy is 3E,,, for the incident particle. 

I t  is therefore interesting that s is also linear with lg E,,, as shown in figure 4. 
There appears to be some variation about s = 0.4 near the lower energy end of the 
plot, but the value of s goes up steadily from E,, 2: 50 GeV (Curran 1969). 

I t  is known that the s value indicates the character of the emission in the cms of 
the reaction; isotropic emission from one centre at rest in the cms will give s = 0.39, 
and higher values of s indicate that the emission is from two centres moving in 
opposite directions in the cms, or nonisotropic emission from one centre at rest, to 
take but two cases. We can see therefore that both using E ,  and E,, the s values show 
that there is nonisotropic emission at higher energies than about 50-100 GeV for the 
incident primary. Perhaps we have here a clear indication of the threshold energy for 
fireball production, and a clue that it is not a dominant mechanism at lower energies. 

We could also take the scatter diagram for a class of events and fit a polynomial 
to the points in the usual fashion. This would give us curves which intersect near 
s = 0.4 and E = 100 GeV. We have used a four-degree polynomial fitted by least 
squares. An alternative definition of a slope parameter would be the gradient of each 
of these fitted curves, at a fixed energy which could be 1000 GeV. I t  is clear again that 
this parameter would be different for the various classes. Here also there is an 
apparent threshold at about 100 GeV, where the different fitted curves seem to 
intersect. Reaction models should be possible that would allow the prediction of 
these slopes for each class at different energy levels. 

3. Frequency distribution of the dispersion 
If we plot the frequency distribution of all reactions we obtain the plot shown in 

figure 5. Here we can see that the peak is at about s = 0-6 or so. This is far from 

S 

Figure 5 .  Frequency distribution of dispersion s for ail reactions. 
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the value of 0.39 accepted for isotropic emission. Peaking is at about the same value 
of s = 0.6 for both primary and secondary reactions taken separately. The  shape of 
the distribution, as can be seen, is not quite gaussian. 

It has been noted by Gierula (1969) that if we consider the Lorentz factor of the 
fireball emitting system in the cms = yf and the Lorentz factor of the cms in the 
laboratory frame = yo then we can use the relation 

Yf = Y c r  

which will give a linear variation of the dispersion with log energy. There is a relation 
noted by Imaeda (1963) for the dispersion and the Lorentz factor of the fireball: 

Yf = cosh k( g 2  - 0*392)1’2 k = integer, s = U. 

2 
/’ I s 

2 4 
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Figure 6. Variation of dispersion s with the Lorentz factor of the reaction cms 
for computer simulated reactions. 

From this we see that there is a higher value of yf for higher values of the dispersion 
s. In  fact, from our figures the mean value of s at lo4 GeV shows that at this energy 
the mean Lorentz factor of the fireball in the cms is 

primary reactions = 4.0 
secondary reactions = 1.8 . 

The much lower value of yf for the Secondary reactions has to follow from the 
lower dispersion at the same energy. We must remember here that this is in the 
context of the collinear two-fireball model of Cocconi. The s/log energy effect is 
independent of the model. 

4. Nature of the incident particles 
The direct identification of the incident particles by mass measurements is seldom 

possible at these energies. From the ionization, we can however estimate the charge; 
if 2 = 1, and the particle did not visibly originate in another ‘star’ in the emulsion, 
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it came from the primary cosmic radiation, since these detectors are flown at the top of 
the atmosphere. Hence it is almost certainly a proton. If a particle of Z = 1 can be 
seen to originate in a previous reaction ‘star’ in the emulsion block, and goes on to 
cause another interaction, it is classed as a secondary: some of these however may 
decay or pass out of the emulsion. These secondaries are nearly all charged pions, as 
neutral pions have too short a lifetime to be observed directly; there is a small fraction 
of kaons and hyperons. 

These incident particles, primary or secondary, interact with an emulsion nucleus. 
When a small number of heavy prongs due to evaporation of the struck nucleus are 
present, the target cannot be either silver or bromine: less than five heavy prongs is 
usually taken to indicate a nucleon target, as noted in Perkins (1960). Hence 

primary (2 = 1) reactions = mostly proton-nucleon 
secondary (2 = 1) reactions = mostly pion-nucleon. 

The g values we give are thus for proton-nucleon and pion-nucleon reactions with 
a small contamination of kaon and hyperon events. 

5. Error bounds on s and g 
Statistical errors on the values of s are shown in figure 1. The errors in figures 

2 and 3 are similar. Several hundred events have to be used in these diagrams to 
allow the linear trend in s to appear through the ‘noise level’. For the statistical 
errors on g, we obtain 

primary (2 = 1) events (proton-nucleon) 
secondary (2 = 1) events (pion-nucleon) 
all events (2 = 1) 

g = 0*28&0*06 
g = 0*06&0002 
g = 0*1610*04.  

6. Nature of the neutral secondaries 
When we plot the mean dispersion against log energy for primary and secondary 

of 2 = 1, as we have seen, there is a great difference between the two. But if we take 
the neutral primary and neutral secondary events, there seems to be little difference, 
according to our data. This is somewhat puzzling. If the value of g (secondaries, 
2 -I 1) were equal to g (secondaries, neutral) or close to it, we might conclude that 
both were of a mesonic nature; that the neutral secondaries were kaons, and that the 
value of g was a function of the mass. But the most we can say here is that if the primary 
neutral particles are neutrons, then so are many of the neutral secondaries. This 
would argue a far greater cross section for nucleon-antinucleon pair production at 
these energies than would be expected. 

7. Conclusions 
By plotting the mean value of the dispersion s of the log tan theta plot at each 

energy for different incident particles, the slope g over the range from E = 100 GeV 
to 10 000 GeV is obtained using cosmic ray emulsion data. The value of g is found 
to be a characteristic of the incident particle. The slope for neutral primary and 
neutral secondary particles is similar; this would appear to indicate that both are 
mostly neutrons. 
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